
Detection and Classification of Network Attacks via Machine
Learning

Abstract
In a context where cyberattacks are becoming increasingly sophisticated and varied, the detection
and classification of network threats are major issues for the security of computer systems. This
article explores the use of machine learning techniques applied to the CIC-UNSW-NB15 dataset
to improve the efficiency of Intrusion Detection Systems (IDS). We address the challenges
related to the diversity and volume of network data, and present supervised and unsupervised
approaches to identify and classify various types of attacks, including DoS, backdoors, and
exploits. The results obtained highlight the performance of individual and ensemble models
(Stacking, Voting, Bagging) for precise and robust detection of network anomalies. Finally, we
discuss the prospects offered by advanced techniques such as hyperparameter optimization and
dimensionality reduction to enhance resilience against emerging threats.

1. Introduction
In an increasingly connected world, where the digitization of critical systems is becoming omnipresent, computer

networks are constantly exposed to a growing variety of cyberattacks. These attacks, often sophisticated and ever-
evolving, compromise not only the confidentiality, integrity, and availability of data, but can also disrupt critical
infrastructures such as energy, financial, or health networks.

Among the most common forms of attacks are denial of service (DoS) attacks, malware such as backdoors,
exploitations of vulnerabilities, and reconnaissance activities aimed at identifying flaws in systems. Effective detection
and classification of these attacks are therefore essential to prevent damage and ensure the resilience of networks.

However, the challenges to be addressed are numerous:
• Massive volume of network data: Modern systems generate unprecedented volumes of data, making manual

analysis impractical.
• Complexity and diversity of attacks: New threats frequently emerge, rendering signature-based or static rule

solutions obsolete.
In the face of these challenges, machine learning models offer a promising alternative. They are capable of:

1. Identifying complex patterns in large datasets.
2. Adapting to new threats without requiring extensive reprogramming.

This project thus aims to explore machine learning techniques to improve the detection and classification of network
attacks, focusing on efficiency, accuracy, and adaptability in the face of ever-evolving threats. By relying on the dataset
CIC-UNSW-NB15, this work highlights the importance of both supervised and unsupervised approaches in the field
of cybersecurity.

ORCID(s):

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 1 of 52

https://www.unb.ca/cic/datasets/cic-unsw-nb15.html


Short Title of the Article

2. Methodology
2.1. Dataset Presentation

The dataset used for this project is the CIC-UNSW-NB15, a dataset designed for the evaluation of intrusion
detection systems and the classification of network attacks. It contains detailed information about simulated network
flows and covers a wide variety of attack scenarios and legitimate traffic. The data is divided into two main files:
Data.csv and Label.csv.
File Structure

1. Data.csv :
• This file contains the features extracted from the network flows. The columns include measures such as

flow durations, statistics on transmitted packets (average, maximum, minimum size), temporal indicators,
and flags specific to network protocols.

• The 78 columns present can be grouped into several main categories:
– Temporal Features: Flow durations (Flow Duration), packet intervals (Flow IAT Mean, Flow
IAT Max), etc.

– Packet Statistics: Sizes of transmitted packets (Packet Length Mean, Packet Length Max),
variance and distribution, etc.

– Flow-specific Indicators: TCP flags (SYN Flag Count, ACK Flag Count), traffic reports (Flow
Bytes/s, Flow Packets/s).

– Advanced Features: Statistics on sub-flows (Subflow Fwd Packets, Subflow Bwd Packets) and
indicators specific to the beginning of connections (FWD Init Win Bytes, Bwd Init Win Bytes).

• Each line of the file corresponds to a unique network flow.
2. Label.csv :

• This file provides the labels associated with each network flow. The labels are numeric values indicating
the type of traffic, whether it is legitimate or malicious.

• The classes are defined as follows (according to the Readme file):
– 0: Benign traffic (normal).
– 1: Scanning (scans and reconnaissance).
– 2: Backdoor.
– 3: Denial of Service (DoS) attacks.
– 4: Exploits (exploitation of vulnerabilities).
– 5: Fuzzers (automated vulnerability testing).
– 6: Generics (generic cryptographic attacks).
– 7: Reconnaissance.
– 8: Shellcode.
– 9: Worms (computer worms).

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 2 of 52

https://www.unb.ca/cic/datasets/cic-unsw-nb15.html


Short Title of the Article

Size and Diversity
The CIC-UNSW-NB15 dataset has been configured with a distribution of 80% benign data and 20% malicious data

corresponding to attacks.
• Total number of connections: The Data.csv file contains a total of 447,915 network flows.
• Number of features: 76 in Data.csv and 1 in Label.csv

• Distribution of connections by type:
– 0: Benign traffic (normal): 358,332 connections.
– 1: Scanning (scans and reconnaissance): 385 connections.
– 2: Backdoor: 452 connections.
– 3: Denial of Service (DoS) attacks: 4,467 connections.
– 4: Exploits (exploitation of vulnerabilities): 30,951 connections.
– 5: Fuzzers (automated vulnerability testing): 29,613 connections.
– 6: Generics (generic cryptographic attacks): 4,632 connections.
– 7: Reconnaissance: 16,735 connections.
– 8: Shellcode: 2,102 connections.
– 9: Worms (computer worms): 246 connections.

Importance for the Project
The dataset CIC-UNSW-NB15 offers a wealth of realistic scenarios and attacks, making it ideal for:
• Evaluating the ability of learning models to detect and classify different types of threats.
• Testing the effectiveness of both supervised and unsupervised approaches on diverse network data.
By leveraging this dataset, the project aims to develop models capable of quickly detecting anomalies and accurately

classifying types of attacks in a network environment.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 3 of 52

https://www.unb.ca/cic/datasets/cic-unsw-nb15.html


Short Title of the Article

2.2. Data Preprocessing
The CIC-UNSW-NB15 dataset underwent a series of preliminary treatments to ensure its quality and relevance for

the analysis. These steps include handling missing values, deduplication, column transformation, and the removal of
unnecessary features.
Adding and Transforming Columns

• A Label Num column was added to store the numeric values of the labels, identifying the types of connections
(benign or malicious).

• An additional column, Flow Duration (seconds), was created by converting flow durations from microsec-
onds to seconds to facilitate interpretation and analysis.

• A Connection Type column was generated to distinguish benign connections (Benign) from attacks (Attack)
based on the labels.

Handling Missing Values and Data Types
• No missing values were detected in the dataset, as confirmed by exploratory analysis (data.isna().sum()).

Therefore, no corrective actions were necessary.
• The data types were also checked, and all fields were in the expected format (e.g., int64 or float64). Thus, no

further conversion was necessary.
Removing Duplicates

• The initial dataset contained 447,915 rows. After removing duplicates, 306,173 rows were retained, correspond-
ing to a reduction of 141,742 rows (approximately 32% of the dataset). This step helped eliminate redundant
information and reduce the size of the data for more efficient processing.

Removing Non-informative Columns
Some columns were identified as non-informative because they had identical values for all records. These columns

were removed to avoid introducing noise in the learning models. The following columns were eliminated:
• Bwd PSH Flags

• Fwd URG Flags

• Bwd URG Flags

• URG Flag Count

• CWR Flag Count

• ECE Flag Count

• Fwd Bytes/Bulk Avg

• Fwd Packet/Bulk Avg

• Fwd Bulk Rate Avg

Summary of Preprocessing Steps
After these steps, the final dataset consists of 306,173 records and 77 columns. These adjustments ensure a dataset

ready for in-depth analysis and effective modeling.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 4 of 52



Short Title of the Article

2.3. Exploratory Data Analysis (EDA)
2.3.1. Distribution of connections: Benign vs Attacks

Figure 1: Distribution of connections: Benign vs Attacks.

After the preprocessing steps, the pro-
portion between benign and malicious con-
nections slightly evolved, changing from an
initial distribution of 80% for benign flows
and 20% for attacks to a distribution of 73.5%
for benign flows and 26.5% for attacks (see
Figure 1). This change is mainly due to the
removal of duplicates and non-informative
columns. Despite this variation, benign flows
remain overwhelmingly majority, illustrating
a class imbalance while still reflecting the
distributions observed in real-world scenar-
ios.

2.3.2. Distribution of Attack Types

Figure 2: Distribution of attack types

This analysis highlights the frequency
of the various categories of attacks present
in the dataset after preprocessing. The most
represented attack categories are Exploits
(30,951 occurrences) and Fuzzers (29,613
occurrences), which together constitute a sig-
nificant proportion of the malicious traffic
(see Figure 2). In contrast, some categories,
such as Worms (246 occurrences) and Anal-
ysis (385 occurrences), are markedly under-
represented. This underrepresentation could
lead to a decrease in the performance of
machine learning models in classifying these
types of attacks.

These variations in the frequency of at-
tacks likely reflect realistic scenarios, where
certain forms of attacks are more widespread
or easier to simulate in controlled environ-
ments. These results underscore the impor-
tance of using robust modeling strategies ca-
pable of managing class imbalance. For ex-
ample, techniques such as oversampling rare
classes or undersampling majority classes
could be employed to improve model perfor-
mance.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 5 of 52



Short Title of the Article

2.3.3. Flow Duration by Connection Type (Box Plot)

Figure 3: Flow duration by connection type.

The analysis reveals that, although cer-
tain attack categories like Exploits and
Fuzzers show a slightly wider dispersion of
their durations, it is clear that flow duration,
when considered in isolation, is not a suffi-
cient criterion to distinguish malicious flows
from benign flows. For example:

• Benign connections, while concen-
trated around short durations, share
similar value ranges with several types
of attacks.

• The durations of attacks, such as DoS,
Reconnaissance, and even Worms, sig-
nificantly overlap with those of benign
flows, making it difficult to make a
clear distinction based solely on this
characteristic.

These results highlight the limitation of flow
duration as a discriminating criterion. To im-
prove the differentiation between normal and
malicious traffic, it is necessary to integrate
other criteria, such as packet volume, packet
size, or behavioral indicators.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 6 of 52



Short Title of the Article

2.3.4. Relation between flow duration and connection types (Normal vs Attack)

Figure 4: Relationship between flow duration and transmitted packets
(Total Fwd Packet and Total Bwd Packet) according to the type of
connection.

This visualization illustrates the relation-
ship between network flow duration (Flow
Duration) and the total number of packets
transmitted forward (Total Fwd Packet) and
backward (Total Bwd Packet) according to
the type of connection (attack or benign).

Malicious connections (in red) show
greater variability, including flows with high
durations and packet volumes, while be-
nign connections (in blue) primarily cluster
around shorter durations and limited vol-
umes. These marked differences between
benign and malicious flows highlight ex-
ploitable patterns for anomaly detection and
network attack recognition.

Furthermore, by combining the flow du-
ration with the total number of transmitted
packets (Total Fwd Packet and Total Bwd
Packet), it becomes possible to better distinguish malicious connections from benign ones. For example:

• Malicious connections exhibit extreme packet volumes and increased variability compared to benign connec-
tions.

• Benign flows, on the other hand, remain concentrated within short duration ranges and more predictable packet
volumes, allowing for clearer separation when another parameter is added to the analysis.

These observations reinforce the importance of a multi-parameter approach to effectively capture the behaviors of
malicious network flows in a complex environment.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 7 of 52



Short Title of the Article

2.3.5. Heatmap of Correlations

Figure 5: Heatmap of correlations between the different characteristics of network flows.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 8 of 52



Short Title of the Article

Analysis and Interpretations:

• Strong Positive Correlations: Some features show very high positive correlations, indicated by dark red cells.
For example:

– Temporal features such as Flow IAT Mean and Flow IAT Std are strongly correlated, reflecting an intrinsic
relationship between the mean and the dispersion of the intervals between packet arrivals in a flow.

• Significant Negative Correlations: Significant inverse relationships can be identified, represented by dark blue
cells. For example:

– Bwd Packet Length Min and Fwd Act Data Pkts exhibit a notable negative correlation. This indicates that
a decrease in the minimum length of backward packets is often associated with an increase in the number
of packets containing active data forwards, which may reflect an asymmetry in network flow behavior.

• Weak Correlations: Some variables, such as flag indicators (FIN Flag Count, RST Flag Count), show
weak correlations with other features. This indicates that these variables might provide complementary and
independent information to learning models, particularly in nonlinear or unsupervised approaches.

Perspectives for Machine Learning:

• Dimensionality Reduction: Features that show very high correlations, such as Packet Length Mean and Packet
Length Std, can be considered redundant. Their removal or grouping (for example, using methods such as
Principal Component Analysis, PCA) would help reduce model complexity while maintaining a large portion of
the relevant information.

• Selection of the Most Relevant Features: The relationships identified with variables such as Flow Duration,
Flow IAT Mean, and Packet Length Variance underscore their importance for anomaly detection and flow
classification. These features capture critical behaviors of network flows and should be included in the models.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 9 of 52



Short Title of the Article

2.3.6. Anomaly Detection with Isolation Forest

Figure 6: Anomaly detection with Isolation Forest.

The Isolation Forest ap-
proach is utilized to identify
anomalies in the dataset by clas-
sifying flows as normal or ab-
normal. The graph on the right
(Figure 6) illustrates the perfor-
mance of this method by differ-
entiating benign and malicious
flows. It presents the separation
between normal flows (in blue)
and detected anomalies (in red),
based on flow duration (Flow
Duration) and the total num-
ber of packets forwarded (Total
Fwd Packet). The results show
a concentration of normal flows
around short durations and a low
volume of packets, while anoma-
lies span a wider range of both
variables. This illustrates the effectiveness of the Isolation Forest approach to detect unusual behaviors.

Figure 7: Classification of flows according to their condition (attack or normal) with
Isolation Forest.

The second graph (Figure 7)
refines this analysis by incorpo-
rating information about mali-
cious and benign flows. It shows
that undetected malicious flows
(orange points) represent a crit-
ical error for attack detection,
as these flows go unnoticed and
evade any protective measures.
Conversely, the pink points rep-
resent benign flows misclassified
as anomalies, indicating false
positives. Although these are
less critical, they nonetheless
reveal limitations in the algo-
rithm’s ability to distinguish nor-
mal flows from malicious flows.
These results highlight the chal-
lenges posed by the overlap of
features between benign and ma-
licious flows, complicating classification and underscoring the need for complementary approaches to improve overall
accuracy and prioritize the reduction of false negatives.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 10 of 52



Short Title of the Article

2.3.7. Exploration of Relationships between Dataset Features
This section focuses on the in-depth analysis of relationships between certain features of the dataset, in order to

assess their potential to discriminate between normal flows and attacks, and to improve the classification of specific
types of attacks. Initially, we will examine the features that differentiate benign connections from attacks. Then, we
will analyze the key features that help distinguish between different categories of attacks.
Differentiation of Benign Connections and Attacks:

Figure 8: Total number of packets transferred by connection type.

Total number of packets transferred
by connection type: The analysis of the
total number of packets transferred reveals a
clear distinction between benign connections
and attacks. Benign traffic shows a signifi-
cantly higher volume of packets transferred
than all combined categories of attacks. This
behavior is representative of regular and con-
tinuous connections, such as those observed
in normal scenarios.

In contrast, attacks, especially Exploits,
DoS, and Fuzzers, exhibit much lower packet
volumes. This reflects irregular behaviors or
those specific to targeted malicious actions.
For example:

• DoS attacks generate concentrated
traffic over a short duration, but their
total volume remains lower than that
of benign flows.

• Exploits attacks display a more moder-
ate volume, corresponding to repeated
but localized exploitation attempts.

These observations highlight the importance of the total number of packets transferred as a key distinguishing
feature for separating benign traffic from attacks. Benign flows, with their high and continuous volume, can be quickly
identified, while attacks cluster in ranges of lower volumes. This distinction can be effectively used in anomaly detection
models for initial traffic classification.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 11 of 52



Short Title of the Article

Figure 9: Total number of packets received by connection type.

Total number of packets received by
connection type: The analysis of the total
number of packets received also reveals a
significant difference between benign con-
nections and attacks. Benign traffic (Benign)
presents a markedly higher volume of re-
ceived packets than all categories of attacks
combined. This reflects the stable and sus-
tained nature of normal flows.

In contrast, attacks, particularly Exploits,
DoS, and Fuzzers, show much lower volumes
of received packets. These differences can be
explained by the characteristics of specific
attacks:

• DoS attacks focus on overwhelming
resources by issuing massive requests,
but they do not necessarily involve a
significant return of data.

• Exploits attacks tend to generate tar-
geted exchanges with a limited number
of packets, reflecting specific exploita-
tion attempts.

These results reinforce the idea that the volume of packets received is a key characteristic for differentiating benign
flows from malicious flows. Machine learning models can leverage these observations to enhance anomaly detection
accuracy and classify types of network flows.

Figure 10: Average duration of high-bandwidth connections (Bytes/s).

Average duration of high-bandwidth
connections (Bytes/s): The analysis of the
average duration of high-bandwidth connec-
tions highlights a clear separation between
benign traffic (Benign) and network attacks.

The following observations stand out:
• Benign traffic has a significantly

higher average connection duration
than all categories of attacks com-
bined. This characteristic reflects reg-
ular and continuous network behaviors
associated with stable data transfers
over extended periods.

• Attacks, such as Exploits, DoS, and
Generic, exhibit significantly shorter
durations, corresponding to sporadic
or intensive behaviors over a limited
time.

• The attack categories Reconnaissance,
Shellcode, and Worms are character-
ized by particularly low durations, in-
dicating rapid and targeted actions
within the network.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 12 of 52



Short Title of the Article

These results emphasize the importance of average duration combined with high bandwidth as a discriminating
feature for differentiating normal connections from malicious ones. This distinction is especially useful for identifying
abnormal behaviors in high-bandwidth systems where connection stability plays a critical role.
Differentiation Between Attack Types:

(a) Logarithmic flow duration by connection type.

(b) Flow duration by connection type (linear).

Figure 11: Analysis of flow duration by connection type: logarithmic
and linear.

Average flow duration by connec-
tion type and detailed analysis: The anal-
ysis of the average flow duration reveals
significant differences between the various
types of attacks. Connections associated with
Generic attacks exhibit exceptionally high
average durations compared to other cate-
gories, distinctly differentiating them from
other types of attacks. This may reflect sce-
narios where prolonged flows are used for
specific tasks, such as large-scale data trans-
fers or ongoing exploitation processes.

In comparison, DoS and Exploits attacks
show relatively short flow durations, consis-
tent with their nature:

• DoS attacks generally involve a large
number of short connections intended
to overload the resources of a target
system.

• Exploits attacks consist of targeted and
repeated attempts, often with limited
durations to evade detection.

Benign flows (Benign), on the other
hand, display average durations lower than
most attacks, reflecting their stable and non-
intrusive nature. These differences in flow
duration can be leveraged to enhance the
classification of attack types by incorporat-
ing this feature into machine learning models
to capture atypical behaviors related to con-
nection durations.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 13 of 52



Short Title of the Article

Average connection throughput
(Bytes/s) by connection type: The anal-
ysis of the average connection throughput
(Bytes/s) highlights significant differences
between attack types and benign traffic (Be-
nign). Benign connections exhibit a very low
average throughput, characteristic of stable
and regular network traffic. In contrast, cer-
tain categories of attacks, such as Generic,
Shellcode, and Worms, are distinguished by
particularly high average throughput, sug-
gesting intensive data transfers over a limited
period.

Figure 12: Average connection throughput (Bytes/s) by connection
type.

In detail:
• The Generic attacks exhibit the high-

est average throughput, reflecting mas-
sive data transfer activities, often
linked to attempts at exfiltration or re-
source overload.

• Shellcode and Worms attacks also
show significant throughput, which
may indicate aggressive propagation
or execution of malicious payloads.

These variations in average throughput
can be exploited as a key indicator to dis-
tinguish not only attacks from benign flows
but also to differentiate between attack types.
Their integration into machine learning mod-
els can enhance algorithms’ ability to iden-
tify abnormal behaviors in real time.

Total number of packets transferred
for long-duration flow attacks: The anal-
ysis of the total number of packets transferred for long-duration flow attacks reveals characteristic patterns that can
help distinguish between different categories of attacks.

Figure 13: Total number of packets transferred for long-duration flow
attacks.

In particular:
• Exploits attacks clearly dominate in

terms of transferred packet volume, re-
flecting repeated exploitation attempts
over an extended duration.

• DoS attacks also present a high vol-
ume of packets, although more con-
centrated, indicating intense actions
over a relatively short period.

• Fuzzers and Generic attacks, on the
other hand, show moderate volumes,
highlighting more localized or specific
behaviors.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 14 of 52



Short Title of the Article

These observations underscore the diver-
sity of strategies employed in long-duration
network attacks, where certain categories ex-
ploit massive data volumes to overwhelm
systems (e.g., DoS), while others favor more
subtle but prolonged approaches (e.g., Ex-
ploits).

The integration of this feature into machine learning models can be crucial for identifying these prolonged attacks
and anticipating their potential impact on network infrastructures.

Figure 14: Top 100 attack connections with the most packets received.

Top 100 attack connections with
the most packets received: The analysis
of the 100 attack connections that received
the highest number of packets reveals dis-
tinct characteristics among the different cat-
egories of attacks.

The main results are as follows:
• DoS attacks clearly stand out with a

significantly higher volume of packets
received compared to other categories.
This behavior is expected, as DoS at-
tacks generally involve an intense and
sustained flow aimed at overwhelming
target resources.

• Exploits and Generic attacks also
show high volumes of packets re-
ceived, although less pronounced than
the DoS. This reflects attack tactics
requiring multiple exchanges to exploit vulnerabilities or carry out prolonged malicious actions.

• Other categories, such as Fuzzers, Re-
connaissance, and Shellcode, exhibit
much lower volumes, suggesting more
targeted or limited actions in terms of
network interaction.

These observations highlight the importance of connections with a large number of received packets as indicators
for identifying certain types of attacks, particularly DoS. This feature can be utilized to prioritize the detection and
classification of the most harmful network attacks in a real-time context.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 15 of 52



Short Title of the Article

Conclusion : The analysis of the relationships between the different characteristics of the dataset highlighted key
variables that allow for the distinction between benign connections and attacks, as well as the differentiation of attack
types from one another. Among these characteristics, the total number of packets transferred and received, the average
duration of flows, the average throughput of connections, and the volumes of data exchanged in specific scenarios (long
durations or intense flows) proved to be particularly discriminative.

These observations emphasize the following points:
• Benign connections are characterized by high and steady volumes, prolonged durations, and generally low

throughputs, reflecting regular and predictable behaviors.
• Attacks, on the other hand, show varied behaviors: DoS and Generic attacks are associated with high volumes

or intense throughputs, while Exploits and Fuzzers are characterized by shorter durations and more moderate
volumes.

• Certain specific categories, such as Shellcode, Worms, and Reconnaissance attacks, stand out due to extreme or
targeted characteristics, thus providing unique clues for their identification.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 16 of 52



Short Title of the Article

3. Implementation and Results
3.1. Dimensionality Reduction
3.1.1. PCA (Principal Component Analysis)

Principal Component Analysis (PCA) was performed to reduce the dimensionality of the dataset while retaining
most of the variance. This method allows for the visualization of data in a reduced-dimensional space and helps to
detect groupings or anomalies.

Figure 15: Visualization of data after PCA (2D).

Visualization of Data after PCA (2D):
In Figure 15, the data projected onto the first
two principal components (PC1 and PC2)
show some separation between types of at-
tacks and benign traffic (Benign). The DoS,
Exploits, and Generic attacks exhibit partial
groupings, while the other categories mix
more, suggesting a stronger similarity among
their main characteristics.

However, this visualization also high-
lights significant overlap between certain
classes, particularly benign flows and some
attacks (Reconnaissance, Worms), making
their differentiation more challenging.
Visualization after Feature Selection
(2D): Figure 16 shows the data after se-
lecting the most relevant features before ap-
plying PCA. This step allowed for better
separation of the data, but their organization
remains relatively cluttered, still making it
difficult to identify clear structures among
the different classes.

Figure 16: Visualization of data after PCA with feature selection.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 17 of 52



Short Title of the Article

Figure 17: Visualization of data after PCA (3D).

Visualization of Data in 3D after PCA:
Figure 17 presents a 3D projection of the
data onto the first three principal com-
ponents (PC1, PC2, and PC3). However,
this visualization does not provide signifi-
cant information compared to the other two-
dimensional representations. The groupings
remain vague, and the overlaps between the
different data categories, especially between
attacks and benign traffic, persist strongly.
This graph illustrates the limitations of PCA
in differentiating classes in complex datasets.
Conclusion: The application of PCA al-
lowed for a reduction in dimensionality while
preserving variance. Nevertheless, the visu-
alizations obtained, whether in 2D or 3D,
do not allow for a clear-cut separation of
categories, particularly for benign flows and
certain attacks (Reconnaissance, Worms).

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 18 of 52



Short Title of the Article

3.1.2. t-SNE
The t-Distributed Stochastic Neighbor

Embedding (t-SNE) technique has been used
to reduce the dimensionality of the data
and facilitate their visualization in a low-
dimensional space (2D). This method is par-
ticularly useful for capturing local relation-
ships between data points while preserving
global structures.

(a) Sample of 20,000 points (b) Sample of 100,000 points (c) Complete set (306,173 points)

Figure 18: Visualization of data after dimensionality reduction with t-SNE for different samples.

The visualizations obtained using t-SNE show the evolution of groupings in the data according to the size of
the analyzed sample. For a small sample of 20,000 points (Figure 18a), apparent groupings are observed, with a
partial separation between benign flows and certain categories of attacks. Increasing the sample size to 100,000 points
(Figure 18b) makes these groupings less distinct, indicating an increasing overlap between classes. Finally, when t-SNE
is applied to the complete dataset (Figure 18c), it becomes clear that no significant grouping can be identified. This
suggests that the complexity and diversity of the data make it difficult to differentiate categories on a large scale,
requiring complementary approaches to analyze this data.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 19 of 52



Short Title of the Article

3.2. Supervised Machine Learning
3.2.1. Attack Identification (Individual Models)

In this step, several individual models were trained for attack identification using binary training data. The scores
of the main metrics for each model (Precision, Recall, F1-Score, and Overall Precision) were compared, and the results
are presented in Figure 19.

Figure 19: Comparison of metrics for different individual models.

The XGBoost model achieved the best scores, tying with CatBoost and LightGBM in terms of precision, recall,
and F1-Score. However, XGBoost stood out due to its faster execution time, making it the optimal model for this task.

The confusion matrices for each model are presented below (Figures 20 to 21). They show similar rates of false
negatives and false positives for the different models. However, XGBoost remains slightly superior, followed by
CatBoost and LightGBM.

Figure 19: Decision Tree Figure 19: Random Forest Figure 19: Extra Trees

Figure 20: Confusion matrices for Decision Tree, Random Forest, and Extra Trees.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 20 of 52



Short Title of the Article

Figure 20: CatBoost Figure 20: LightGBM Figure 20: XGBoost

Figure 21: Confusion matrices for CatBoost, LightGBM, and XGBoost.

To further improve the performance of the XGBoost model, a search for optimal hyperparameters was conducted.
The results after optimization are detailed below:

• Overall Precision : 0.9773
• Overall Recall : 0.98
• Overall F1-Score : 0.97
• Class "Benign" :

– Precision : 1.00
– Recall : 0.97

• Class "Attack" :
– Precision : 0.93
– Recall : 0.99

By comparing these results with those obtained before optimization, it is observed that:
• The overall precision remains stable (from 0.9775 to 0.9773), with a very slight decrease.
• The overall recall decreases slightly (from 0.9817 to 0.98), but remains high.
• The overall F1-Score showed a slight improvement (from 0.9717 to 0.97), indicating a better balance between

precision and recall.
• For the "Benign" class, precision reaches a perfect value (1.00), reducing false positives (attacks incorrectly

classified as benign).
• For the "Attack" class, although precision decreases (from 0.97 to 0.93), recall remains high (0.99), limiting

false negatives (benign samples incorrectly classified as attacks).
These results confirm that hyperparameter optimization allows for a better balance in class classification,

particularly by reducing errors for the "Benign" class.
In conclusion, XGBoost, with or without hyperparameter optimization, remains the most effective model for attack

identification due to its balanced overall performance and fast execution time. However, the choice of final parameters
will depend on the specific priorities of the application, such as minimizing false positives or false negatives.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 21 of 52



Short Title of the Article

3.2.2. Attack Classification (Individual Models)
In this step, several individual models were trained specifically for the classification of different categories of

attacks. The main metrics such as precision, recall, F1-score, and overall accuracy were compared for each model. The
results are presented in Figure 22.

Figure 22: Comparison of metrics by model for attack classification.

As observed in the results, the XGBoost model continues to stand out, closely followed by LightGBM and
CatBoost. XGBoost achieves the best scores in terms of F1-score and overall accuracy, making it particularly effective
for multi-class classification of attacks. However, models such as Decision Tree and Extra Trees show inferior
performance, particularly on less represented classes.

The confusion matrices for each model (Figures 23 to 24) highlight the specific strengths and weaknesses of the
models in classifying the different categories of attacks. For example, the XGBoost and LightGBM models display
high detection rates for frequent classes such as Exploits and Fuzzers, but show slightly weaker performance for rarer
classes like Worms and Shellcode.

Figure 22: Decision Tree Figure 22: Random Forest Figure 22: Extra Trees

Figure 23: Confusion matrices for Decision Tree, Random Forest, and Extra Trees in attack classification.

In conclusion, although all models show acceptable performance in the detection and classification of attacks,
XGBoost stands out as the best candidate for this task, due to its balance between precision, recall, and F1-score.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 22 of 52



Short Title of the Article

Figure 23: CatBoost Figure 23: LightGBM Figure 23: XGBoost

Figure 24: Confusion matrices for CatBoost, LightGBM, and XGBoost in attack classification.

Furthermore, its robustness on majority classes and its relative effectiveness on rare classes reinforce its role as a
preferred tool in multi-class attack detection.

To further enhance the performance of the XGBoost model in multi-class classification, a search for optimal
hyperparameters was conducted using the Optuna library. The results after optimization are detailed below:

• Overall Precision : 0.7534
• Overall F1-Score (weighted average) : 0.74
• Class "Analysis" :

– Precision : 0.55
– Recall : 0.48
– F1-Score : 0.51

• Class "Backdoor" :
– Precision : 0.96
– Recall : 0.49
– F1-Score : 0.65

• Class "DoS" :
– Precision : 0.75
– Recall : 0.28
– F1-Score : 0.41

• Class "Exploits" :
– Precision : 0.82
– Recall : 0.78
– F1-Score : 0.80

• Class "Fuzzers" :
– Precision : 0.68
– Recall : 0.94
– F1-Score : 0.79

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 23 of 52



Short Title of the Article

• Class "Generic" :
– Precision : 0.87
– Recall : 0.78
– F1-Score : 0.82

• Class "Reconnaissance" :
– Precision : 0.84
– Recall : 0.55
– F1-Score : 0.67

• Class "Shellcode" :
– Precision : 0.48
– Recall : 0.19
– F1-Score : 0.28

• Class "Worms" :
– Precision : 0.74
– Recall : 0.35
– F1-Score : 0.48

Comparing these results with those obtained before optimization, it is observed that :
• Overall precision has increased (from 0.7522 to 0.7534), indicating a slight improvement in overall performance.
• Some classes, such as Exploits, Fuzzers, and Generic, maintain high recall and F1-Score, confirming their

robustness after optimization.
• For minority classes such as Backdoor and Worms, optimization led to a notable improvement in precision and

recall.
• Classes such as Shellcode and DoS still present margins for improvement, particularly in recall and F1-Score.
These results confirm that hyperparameter optimization slightly improves overall performance and encourages a

better balance between precision and recall for some critical classes. However, specific improvements are still needed
to better address less frequent classes.

In conclusion, the use of Optuna to adjust the hyperparameters of XGBoost has led to optimal results in multi-
class classification while maintaining strong performance for majority classes. These adjustments make XGBoost a
high-performing and suitable model for this complex task.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 24 of 52



Short Title of the Article

3.2.3. Attack Identification (Ensemble Models)
To go beyond the performance achieved with individual models (see previous sections), we evaluated different

ensemble approaches for binary attack detection (Identification). Three complementary strategies were considered:
• Voting, which combines the predictions of several classifiers to make a majority decision or one based on the

sum of probabilities.
• Bagging, where several instances of the same algorithm (here XGBoost) are trained on randomly sampled (with

replacement) subsets of the dataset, and then aggregated.
• Stacking, which nests several base models (here XGBoost, LightGBM, and CatBoost) and utilizes a meta-model

(XGBoost) to learn from their predictions.
Evaluation Metrics: In the context of attack detection, we primarily relied on four metrics to evaluate and compare
the performance of the models:

• Accuracy: Proportion of correct predictions (well-detected attacks + correctly identified benign flows) over
all predictions. Accuracy can be misleading in cases of significant class imbalance, but it remains a general
performance indicator.

• Precision: Fraction of positive predictions (detected attacks) that are actually positive. More concretely, among
all flows declared malicious by the model, Precision indicates the proportion that is indeed malicious. It is crucial
for reducing false positives.

• Recall: Fraction of positive instances (true attacks) that are correctly detected. It measures the model’s ability
to recover actual malicious elements. A high Recall is essential to minimize false negatives.

• F1-Score: Harmonic mean between Precision and Recall. The F1-Score is particularly useful for comparing
models when there is class imbalance (malicious vs benign), as it balances the importance given to false positives
and false negatives.

Ensemble Models Without Hyperparameter Optimization: Initially, these ensemble algorithms were evaluated
without specific hyperparameter tuning for each classifier. The results obtained (Accuracy, Precision, Recall, and F1-
Score) are indicated below:

• Voting Classifier:
– Accuracy ≈ 0.97769
– Precision ≈ 0.92872
– Recall ≈ 0.99199
– F1-Score ≈ 0.95931

• Bagging (XGBoost):
– Accuracy ≈ 0.97748
– Precision ≈ 0.92862
– Recall ≈ 0.99125
– F1-Score ≈ 0.95891

• Stacking (XGBoost, LightGBM, CatBoost):
– Accuracy ≈ 0.97751
– Precision ≈ 0.92967
– Recall ≈ 0.99008
– F1-Score ≈ 0.95892

We observe that Voting stands out slightly in Accuracy and Recall, while Stacking offers the best Precision.
Nevertheless, the performance gaps remain relatively small, with each approach showing notable robustness for binary
attack detection.
Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 25 of 52



Short Title of the Article

Ensemble Models with Hyperparameter Optimization: To further improve performance, automated optimization
strategies (via Optuna) were applied to each base algorithm (XGBoost, LightGBM, CatBoost), and these optimized
classifiers were then used in ensemble methods. The final results for binary detection are summarized below:

• Voting Classifier (after optimization):
– Accuracy ≈ 0.97738
– Precision ≈ 0.92692
– Recall ≈ 0.99298
– F1-Score ≈ 0.95881

• Bagging (optimized XGBoost):
– Accuracy ≈ 0.97724
– Precision ≈ 0.92757
– Recall ≈ 0.99156
– F1-Score ≈ 0.95850

• Stacking (optimized XGBoost, LightGBM, CatBoost):
– Accuracy ≈ 0.97750
– Precision ≈ 0.92882
– Recall ≈ 0.99107
– F1-Score ≈ 0.95893

In this configuration, Stacking achieves a slight advantage in Accuracy (≈ 0.97750) and F1-Score (≈ 0.95893),
while Voting shows a slightly higher Recall (≈ 0.99298), which is critical for minimizing false negatives. The
improvements confirm the value of fine-tuning hyperparameters, although the gains remain relatively modest.
Conclusion (Binary Identification): The application of ensemble methods (Voting, Bagging, Stacking) has
consolidated and refined the already high performance of the best individual algorithms for attack detection. Depending
on the primary objective (reduce false positives or reduce false negatives), the most appropriate approach will be
favored:

• Stacking for its balance of Precision/Recall and high F1-Score,
• Voting when Recall is critical (monitoring aimed at capturing nearly all threats).

Thus, ensemble approaches fully validate their contribution to the rapid and reliable detection of malicious flows.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 26 of 52



Short Title of the Article

3.2.4. Attack Classification (Ensemble Models)
To go beyond the performances obtained with individual models (see previous sections), we evaluated different

ensemble approaches for attack classification. Three complementary strategies were considered:
• Voting, which combines the predictions of several classifiers to make a majority decision or based on the sum

of probabilities.
• Bagging, where multiple instances of the same algorithm (here XGBoost) are trained on randomly drawn (with

replacement) samples from the dataset, then aggregated.
• Stacking, which nests several base models (for example XGBoost, LightGBM, and CatBoost) and uses a meta-

model to learn from their predictions.
Evaluation Measures: In the context of multiclass attack classification, we mainly relied on four metrics to evaluate
and compare the models’ performances:

• Accuracy: Proportion of correct predictions (well-classified attacks + correctly identified benign traffic) over
all predictions.

• Precision: Fraction of positive predictions in each class that are actually positive.
• Recall: Fraction of positive instances (true attacks) in each class that are correctly detected.
• F1-Score: Harmonic mean between Precision and Recall, useful for balancing the importance of false positives

and false negatives when classes are imbalanced.

Ensemble Models Without Hyperparameter Optimization: Initially, these ensemble algorithms were evaluated
without specific adjustment of hyperparameters for each classifier. The obtained results (Accuracy, Precision, Recall,
and F1-Score) are indicated below:

• Voting Classifier:
– Accuracy ≈ 0.74042
– Precision ≈ 0.74166
– Recall ≈ 0.74042
– F1-Score ≈ 0.72510

• Bagging (XGBoost):
– Accuracy ≈ 0.74775
– Precision ≈ 0.76145
– Recall ≈ 0.74775
– F1-Score ≈ 0.73130

• Stacking:
– Accuracy ≈ 0.74769
– Precision ≈ 0.75468
– Recall ≈ 0.74769
– F1-Score ≈ 0.73565

Analysis (Without optimization):
The Voting Classifier shows the lowest accuracy (0.74042) and a lower F1-Score (0.72510) than the other methods.
Bagging and Stacking demonstrate very close performances (Accuracy around 0.7477), with a slight advantage in
Precision for Bagging (0.76145) and a slightly better F1-Score for Stacking (0.73565). Overall, Bagging and Stacking
slightly outperform Voting, though without creating a significant gap between them.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 27 of 52



Short Title of the Article

Ensemble Models with Hyperparameter Optimization: To further enhance performance, optimization strategies
(for example via Optuna) were applied to the base algorithms, and these optimized classifiers were then used in the
ensemble methods. The final results for attack classification are summarized below:

• Voting Classifier (after optimization):
– Accuracy ≈ 0.75397
– Precision ≈ 0.76952
– Recall ≈ 0.75397
– F1-Score ≈ 0.73844

• Bagging (optimized XGBoost):
– Accuracy ≈ 0.74898
– Precision ≈ 0.76253
– Recall ≈ 0.74898
– F1-Score ≈ 0.73329

• Stacking (optimized):
– Accuracy ≈ 0.75650
– Precision ≈ 0.76727
– Recall ≈ 0.75650
– F1-Score ≈ 0.74464

Analysis (With optimization):
All three approaches benefit significantly from hyperparameter optimization, as illustrated by their respective
increases in Accuracy and F1-Score. The Voting Classifier, for example, moves from 0.74042 to 0.75397 in Accuracy,
indicating a substantial gain. The Voting achieves the highest absolute Precision (0.76952), while Stacking leads in
Accuracy (0.75650) and F1-Score (0.74464). The optimized Bagging ranks in between in terms of overall performance
(Accuracy at 0.74898, F1-Score at 0.73329), but remains below Stacking. Ultimately, the optimized Stacking emerges
as the most balanced method, offering the best Precision/Recall combination and the highest F1-Score.

Conclusion (Attack Classification): Hyperparameter optimization brings considerable gains for all three ensem-
ble methods, confirming the usefulness of fine-tuning to improve multiclass attack detection. If the goal is to maximize
precision (reduce false positives), one might lean towards the Voting Classifier, while the optimized Stacking, due to
its balance between Precision and Recall, offers the best overall performance for attack classification.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 28 of 52



Short Title of the Article

Table 1
Comparison of different results for Identification and Classification (with or without optimization).

Type Hyperparameters Technique Accuracy Precision Recall F1 Score
Identification False Individual 0.977497 0.962880 0.981657 0.971709
Identification False Voting 0.977692 0.928720 0.991992 0.959314
Identification False Bagging 0.977480 0.928617 0.991253 0.958913
Identification False Stacking 0.977513 0.929666 0.990083 0.958924
Identification True Individual 0.977317 0.927489 0.991992 0.958657
Identification True Voting 0.977382 0.926916 0.992978 0.958810
Identification True Bagging 0.977235 0.927567 0.991561 0.958497
Identification True Stacking 0.977497 0.928819 0.991068 0.958934
Classification False Individual 0.752187 0.725799 0.528686 0.586843
Classification False Voting 0.740421 0.741662 0.740421 0.725102
Classification False Bagging 0.747752 0.761448 0.747752 0.731302
Classification False Stacking 0.747690 0.754685 0.747690 0.735648
Classification True Individual 0.753357 0.766266 0.753357 0.739967
Classification True Voting 0.753973 0.769516 0.753973 0.738445
Classification True Bagging 0.748984 0.762530 0.748984 0.733294
Classification True Stacking 0.756499 0.767270 0.756499 0.744639

3.2.5. Conclusion of Supervised Machine Learning

Figure 25: (a) Comparison of models for the Identification task

Figure 26: (b) Comparison of models for the Classification task

We can make the following observations based on both table 1 and the graphs in figures 25 and 26 :
Identification (Binary Task). Focusing on the rows dedicated to Identification (14, 0, 1, 2 for the absence of
optimization and 12, 6, 7, 8 for optimization), we note:
Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 29 of 52



Short Title of the Article

• Very high performances: Accuracy scores are close to 0.977 and the F1 Score hovers around 0.959,
for ensemble methods (Voting, Bagging, Stacking) as well as for the Individual approach, with or without
optimization.

• Limited gains from optimization: The differences between "Without" and "With hyperparameters" remain
minimal (e.g., Stacking: 0.977513 vs 0.977497). The Voting (0.977692 vs 0.977382) also shows a negligible
gap.

• Tight visual comparison: Figure 25 shows very close bars, illustrating that all these models are nearly at the
same performance level. Stacking stands out slightly in Precision, but the difference remains small.

• Role of the optimized individual model: Even if it does not always have the highest Accuracy, this model
proves to be very competitive (e.g., row 12: 0.977317 Accuracy and 0.958657 F1 Score), emphasizing that good
optimization of a single classifier can rival ensemble approaches.

Classification (Multiclass Task). Referring to rows 15, 3, 4, 5 (without optimization) and 13, 9, 10, 11 (with
optimization):

• More significant impact of optimization: Notable gains are observed, especially for Voting which increases
from 0.740421 (row 3) to 0.753973 (row 9).

• Stacking optimizes even better: With 0.756499 in Accuracy and 0.744639 in F1 Score (row 11), the optimized
Stacking slightly dominates its competitors. Visually, figure 26 shows it a notch above Voting and Bagging.

• Bagging and Voting close: Although they improve significantly due to optimization, their performances (row
9 and row 10) remain slightly below Stacking at the F1 Score level. Nevertheless, Voting retains the highest
Precision (0.769516).

• Individual Models: The individual approach (row 13) still achieves 0.753357 in Accuracy, a level similar to
the non-optimized ensemble methods, proving that optimization can, in some cases, compensate for the lack of
aggregation techniques.

In conclusion, all models provide a very solid level of performance for detecting and classifying attacks, but the
choice of the method will depend on the targeted objective:

• Minimize false negatives (exhaustive detection): The results show that Voting and Stacking consistently
maintain a high Recall, especially in binary mode (Identification). These approaches are therefore particularly
suited when one wants to detect as many attacks as possible, even if this comes with a slight risk of additional
false positives.

• Reduce false positives (operational stability): If the primary goal is to avoid excessive alerts, Bagging and
Voting often show competitive Precision (e.g., ≈ 0.769516 for Voting in Classification). They therefore allow
for better control of the number of legitimate flows incorrectly identified as malicious.

• Achieve the best overall balance: The optimized Stacking takes a slight lead over other methods in several
scenarios (e.g., Accuracy and F1 Score in Classification), making it more versatile when one wishes to maintain
an optimal compromise between false positives and false negatives.

• Computational budget or practical constraints: An optimized individual model (e.g., XGBoost alone) can
remain relevant if one seeks a simpler solution to deploy while maintaining performance close to that of ensemble
methods.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 30 of 52



Short Title of the Article

3.2.6. Feature Importances
Feature Importances for Individual Adjusted Models Figure 27 shows the feature importances for the individual
models adjusted respectively for the binary identification task and the multi-class classification task. These analyses
highlight the most influential features used by the models to make their predictions.

(a) Binary Identification (b) Multi-Class Classification

Figure 27: Feature importances for the binary identification and multi-class classification tasks.

Analysis: For the identification task, the most important features include FWD Init Win Bytes, Fwd Seg Size
Min, and Bwd Packet Length Min. These features are essential for distinguishing benign flows from malicious flows.
For the multi-class classification, the most important features include Total Length of Bwd Packet, Active Max,
and Bwd Header Length, which efficiently distinguish different categories of attacks.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 31 of 52



Short Title of the Article

Impact on Accuracy Based on the Number of Features Figure 28 illustrates the evolution of accuracy based on
the number of features used for identification and classification tasks.

(a) Binary Identification (b) Multi-class Classification

Figure 28: Evolution of accuracy based on the number of features for identification and classification tasks.

Analysis: For binary identification, a rapid improvement in accuracy is observed with the addition of the first
features, reaching a plateau around 4 features. For multi-class classification, accuracy continues to improve with the
addition of new features, although the gains become marginal beyond 15 to 20 features. This reflects the increased
complexity of the classification task.
Conclusion These analyses demonstrate the importance of features specific to network flows (e.g., packet sizes,
durations, connection parameters) in model performance. The optimal choice of features may vary depending on the
task (binary or multi-class), and a judicious selection helps to maximize performance while reducing complexity.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 32 of 52



Short Title of the Article

Feature Importances for Adjusted Ensemble Models
Identification (Ensemble Models) In this section, we analyze the feature importances of adjusted ensemble

models for identification. Three main models were used: Voting, Bagging, and Stacking. Each model combines
the predictions of several sub-models to enhance robustness and accuracy. The graphs below illustrate the feature
importances for each model, presented side by side to allow for visual comparison.

(a) Voting Model (b) Bagging Model (c) Stacking Model

Figure 29: Feature importances for adjusted ensemble models (Voting, Bagging, and Stacking).

The results show that some models share important features, while others have distinct specifics:
• All three models identify FWD Init Win Bytes as a key feature. This reflects its role in the initial configuration

of network flows.
• The Bagging and Stacking models prioritize temporal features such as Bwd IAT Total and Fwd IAT Mean, which

allow for the detection of temporal patterns and variations in traffic.
• The Voting model focuses more on packet-related attributes like Fwd Seg Size Min and ACK Flag Count,

suggesting a protocol-oriented approach.
These observations highlight the importance of temporal features for complex models like Bagging and Stacking,

while static features are sufficient for simpler models like Voting. This underscores the complementarity of approaches
and the necessity of choosing a model suited to the nature of the data and the problem being studied.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 33 of 52



Short Title of the Article

Classification (Ensemble Models) In this section, we analyze the feature importances of ensemble models
fitted for multi-class classification. Three main models were used: Voting, Bagging, and Stacking. The graphs below
illustrate the feature importances for each model, presented side by side to facilitate visual comparison.

(a) Voting Model (b) Bagging Model (c) Stacking Model

Figure 30: Feature importances for the fitted ensemble models (Voting, Bagging, and Stacking) in multi-class classification.

The results show that each model assigns variable importance to the features used in multi-class classification.
Here are the main observations:

• Voting Model: The most important features include Flow IAT Max, Total Length of Fwd Packet, and Fwd Packet
Length Max. These results indicate that this model emphasizes temporal metrics and packet sizes to differentiate
classes. The consistency of these features shows their relevance for this type of aggregation.

• Bagging Model: The Bagging model favors features such as Total Length of Bwd Packet, Packet Length
Variance, and Fwd Act Data Pkts. These results suggest that this model is more sensitive to variations in length
and the volume of transferred data, reflecting its ability to reduce variance in the sub-models.

• Stacking Model: For Stacking, the dominant features include Flow IAT Max, Total Length of Fwd Packet, and
Fwd Packet Length Std. This indicates that the Stacking model uses similar temporal metrics as the Voting Model
but incorporates a distribution aspect (such as the standard deviation of packet lengths).

• Common Features: Several features are important for all three models, notably Flow IAT Max and Total Length
of Fwd Packet. This suggests that these metrics are generally relevant for multi-class classification, regardless
of the ensemble approach used.

These observations highlight the complementarity of different ensemble models. While Voting and Stacking
emphasize similar temporal metrics, Bagging further explores the variations in lengths and transferred data. These
differences enhance our understanding of how each model utilizes the data to perform robust classifications.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 34 of 52



Short Title of the Article

3.2.7. SHAP
SHAP for Adjusted Individual Models In this section, we explore the SHAP (SHapley Additive exPlanations)
values and interactions for adjusted individual models, focusing on identification and classification tasks.

Identification (Individual Model) The graphs below illustrate the individual contributions of features (SHAP
values) for the identification model.

Figure 31: SHAP values for the individual identification model.

The results show that the feature Fwd Seg Size Min has a significant and direct contribution to the prediction. High
values of this feature are associated with a positive impact on the model. Other features such as Bwd Packets/s and
FWD Init Win Bytes also play a key role in the identification model.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 35 of 52



Short Title of the Article

Classification (Individual Model) For individual models dedicated to classification, the graphs below show
the SHAP interactions between the different features.

Figure 32: SHAP interactions for the individual classification model.

In the context of classification, the interactions reveal complex combined effects between key features such as Total
Length of Bwd Packet, Fwd Packet Length Min, and Flow Duration. These interactions emphasize the importance of
analyzing dependencies between features to enhance the understanding of the model’s predictions.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 36 of 52



Short Title of the Article

SHAP for Adjusted Ensemble Models
Identification (Ensemble Models) In this section, we analyze the SHAP values for adjusted ensemble models

within the framework of the identification task. The three models studied are Voting, Bagging, and Stacking. The
associated graphs illustrate the individual contributions of the features for each sub-model.

Voting Model
The graphs below present the SHAP values for the sub-models of the Voting model.

(a) Sub-model 1 (b) Sub-model 2 (c) Sub-model 3

Figure 33: SHAP values for the sub-models of the Voting model.

The results of the three graphs show that certain features, such as Fwd Seg Size Min and Bwd Packets/s, are
frequently identified as having a strong contribution to the predictions. In the case of Sub-model 1, Fwd Seg Size Min
plays a predominant role, indicating a strong correlation with the model’s decisions. For Sub-model 2, importance is
also attributed to FWD Init Win Bytes and Bwd Packet Length Min, suggesting that these features significantly
influence the predictions. Finally, in Sub-model 3, Flow Duration and Total Length of Bwd Packet stand out,
highlighting variations in the priorities of the sub-models.

These observations underscore the diversity of information used by the Voting sub-models, while also emphasizing
certain recurring features that serve as pillars for the predictions. This illustrates the complementarity of the sub-models
within this ensemble framework.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 37 of 52



Short Title of the Article

Bagging Model
The following graphs group the SHAP values for the five sub-models of the Bagging model.

(a) Sub-model 1 (b) Sub-model 2 (c) Sub-model 3

(d) Sub-model 4 (e) Sub-model 5

Figure 34: SHAP values for the sub-models of the Bagging model.

The analyses reveal that features such as Fwd Seg Size Min and Bwd Packets/s are consistently important across
the five sub-models. However, certain features, such as Total Length of Bwd Packet and Packet Length Variance,
show notable variations in their impact depending on the particular sub-model considered. These differences can
be attributed to the specifics of each sub-model within the Bagging framework, where random samples of the data
influence the importance prioritization of features.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 38 of 52



Short Title of the Article

Stacking Model
Finally, the graphs below present the SHAP values for the three sub-models of the Stacking model.

(a) Sub-model 1 (b) Sub-model 2 (c) Sub-model 3

Figure 35: SHAP values for the sub-models of the Stacking model.

The results of the three sub-models of the Stacking model indicate a strong influence of Fwd Seg Size Min and
Bwd Packets/s on the predictions. These features are recurrent and show consistent importance across the sub-models,
although the specific contributions vary slightly depending on the sub-model.

In addition, features such as Fwd IAT Mean and Flow Duration also provide significant contributions, but their
impact seems to vary more depending on the sub-model. The overall analysis highlights that the Stacking model
leverages a wide range of features to make robust predictions while maintaining some consistency in the importance
of key features.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 39 of 52



Short Title of the Article

Classification (Ensemble Models) In this section, we analyze the SHAP values for the ensemble models fitted
for the classification task. The three models studied are Voting, Bagging, and Stacking. The associated graphs illustrate
the individual contributions of features for each sub-model.

Voting Model
The graphs below present the SHAP values for the sub-models of the Voting model.

(a) Sub-model 1 (b) Sub-model 2 (c) Sub-model 3

Figure 36: SHAP values for the sub-models of the Voting model in the classification task.

The results from the graphs for the Voting model indicate that features such as Fwd Seg Size Min and Bwd
Packets/s are consistently identified as having a strong contribution to the predictions.

In Sub-model 1, Fwd Seg Size Min appears as one of the most influential features, suggesting that the minimum
forward segment sizes are critical for classification. Bwd Packets/s, representing the density of backwards packets,
also plays a key role, indicating that outgoing traffic is an important measure.

Sub-model 2 highlights additional features like Fwd IAT Mean and Bwd Packet Length Min, suggesting that the
temporal variability of the transmitted segments (IAT) as well as the minimum length of backwards packets influence
the model’s decisions. This shows the sub-model’s ability to capture various behaviors in the data.

Finally, Sub-model 3 places more emphasis on Flow Duration and Total Length of Bwd Packet, indicating that
the duration of flows and the sum of the lengths of backwards packets have a notable impact in this context.

These variations between the sub-models reflect a complementarity in their operation. Although some attributes are
recurrent (such as Fwd Seg Size Min), the sub-models also leverage specific features to optimize their predictions. This
approach allows the Voting model to combine different perspectives from the data, thereby increasing its robustness in
classification.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 40 of 52



Short Title of the Article

Bagging Model
The following graphs group the SHAP values for the ten sub-models of the Bagging model.

(a) Sub-model 1 (b) Sub-model 2 (c) Sub-model 3

(d) Sub-model 4 (e) Sub-model 5 (f) Sub-model 6

(g) Sub-model 7 (h) Sub-model 8 (i) Sub-model 9

(j) Sub-model 10

Figure 37: SHAP values for the sub-models of the Bagging model in the classification task.

The analysis of the graphs for the Bagging model reveals several interesting observations regarding the contribu-
tions of the features used by the sub-models.

First, certain features, such as Total Length of Bwd Packet and Fwd Packet Length Min, appear recurrently
among the most influential. These features play a crucial role in several sub-models, indicating that they capture critical
information for the classification task. For example, Total Length of Bwd Packet is often associated with significant
variations in SHAP values, suggesting that it strongly influences the predictions of the sub-models.

Next, it is noted that the order of importance varies significantly between sub-models. For instance, in some sub-
models, Flow Duration and Fwd Packet Length Max show a high contribution, while in others, these features have
a marginal impact. This can be attributed to the Bagging method, which relies on bootstrap samples. Each sub-model
is trained on a different subset of the data, which can lead to variations in the selection of important features.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 41 of 52



Short Title of the Article

Another notable point is the importance of interactions between features. In several graphs, features such as Fwd
Packet Length Std and Packet Length Variance have a non-linear combined effect on predictions. This highlights
that the Bagging model exploits complex relationships between variables to enhance its overall performance.

Finally, although some features are consistently important, others, such as Bwd IAT Min or Fwd IAT Max,
show a significant contribution only in certain sub-models. This reflects the diversity of perspectives brought by the
different sub-models, which is one of the main strengths of Bagging. This diversity contributes to the robustness and
generalization capability of the model.

In conclusion, the analysis of SHAP values for the Bagging model highlights the importance of key features, the
complex interactions between variables, and the complementarity of the sub-models. These observations demonstrate
that the Bagging model can leverage different combinations of features to improve its performance in the classification
task.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 42 of 52



Short Title of the Article

Stacking Model
Finally, the graphs below present the SHAP values for the three sub-models of the Stacking model.

(a) Sub-model 1 (b) Sub-model 2 (c) Sub-model 3

Figure 38: SHAP values for the sub-models of the Stacking model in the classification task.

The graphs representing the SHAP values for the three sub-models of the Stacking model in the classification task
reveal several relevant observations:

• Sub-model 1 :
– The features Fwd Packet Length Min and Total Length of Bwd Packet stand out due to their significant

impact on the predictions.
– Notable variability in SHAP values is observed for features related to flow duration, such as Flow Duration,

suggesting that this sub-model exploits temporal aspects for its decision.
– The interactions between Fwd Packet Length Max and Fwd Packet Length Mean show a strong

correlation, indicating that the model assigns simultaneous importance to these two variables.
• Sub-model 2 :

– The features Fwd Packet Length Max and Total Length of Fwd Packet are predominant.
– A more homogeneous distribution of SHAP values is visible, reflecting a balanced contribution from the

selected features.
– Total Bwd Packets and Fwd Packet Length Std are moderately influential, highlighting their comple-

mentary role in traffic analysis.
• Sub-model 3 :

– The features Flow Duration and Fwd Packet Length Min continue to play a predominant role, but their
impact seems to slightly decrease compared to the other two sub-models.

– Fwd Packet Length Std is further emphasized, suggesting an increased sensitivity of the model to
variability in packet lengths.

– A more pronounced correlation between Total Length of Fwd Packet and Fwd Packet Length Max is
observed, reinforcing their joint importance.

The graphs of the Stacking model highlight the importance of Fwd Seg Size Min and Bwd Packets/s, while
showing that the priorities of the sub-models vary slightly. This illustrates the ability of the Stacking model to effectively
integrate different perspectives from the sub-models, leading to more robust predictions.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 43 of 52



Short Title of the Article

3.2.8. Conclusion Feature Importances and SHAP
The cross-analysis of Feature Importances and SHAP values has highlighted key trends in the influential features

for binary identification and multi-class classification tasks, for both individual models and ensemble models. Here are
the main observations:
Binary Identification Task

• Both individual and ensemble models identified Fwd Seg Size Min, Bwd Packets/s, and FWD Init Win
Bytes as recurring features, suggesting their central role in discriminating benign flows from malicious flows.

• The Voting and Stacking models particularly leverage time-based metrics (Flow Duration, Fwd IAT Mean),
while the Bagging model places more emphasis on length and variance metrics (Packet Length Variance,
Total Length of Bwd Packet).

• SHAP values confirm the importance of these features by showing their direct positive or negative contribution
to predictions, with variations depending on the sub-models and ensemble method used.

Multi-Class Classification Task

• The features Flow IAT Max, Total Length of Fwd Packet, and Fwd Packet Length Max emerge as
dominant elements in both individual and ensemble models, reflecting their relevance in differentiating attack
classes.

• The Bagging and Stacking models are more robust by incorporating complex interactions between features
(Fwd Packet Length Std, Total Bwd Packets), enhancing their ability to capture the specifics of different
classes.

• SHAP values also highlight the complementarity of the models, with each model assigning varied weights to
features based on their structure and ensemble approach.

Global Implications

• The analyses of Feature Importances and SHAP values have confirmed the following features as critical for both
tasks (identification and classification):

– Fwd Seg Size Min

– Bwd Packets/s

– FWD Init Win Bytes

– Flow Duration

– Total Length of Fwd Packet

– Flow IAT Max

– Fwd Packet Length Max

– Packet Length Variance

– Total Length of Bwd Packet

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 44 of 52



Short Title of the Article

4. Unsupervised Learning
4.1. K-Means

In this section, we present the application of the K-Means algorithm for the unsupervised clustering of network
flows. The goal is to highlight natural groupings (clusters) in the data without using their class labels (Label Num).
4.1.1. Elbow Method and Silhouette Score

To determine the optimal number of clusters 𝐾 , we use the elbow method. In parallel, we evaluate the quality of
the cluster separation through the silhouette score. Figure 39 presents both main metrics side by side:

(a) Elbow Method (b) Silhouette Score

Figure 39: On the left: intra-cluster inertia (elbow method). On the right: silhouette score for different values of 𝐾.

The first figure (on the left) illustrates the evolution of intra-cluster inertia (or sum of distances within each cluster)
as a function of the number of clusters 𝐾 . We observe a rapid decrease in inertia up to a certain point where the
improvement becomes marginal, forming an elbow around 𝐾 ≈ 2 or 3.

The second figure (on the right) presents the silhouette score, which measures intra-cluster cohesion and inter-
cluster separation. It ranges from −1 to 1. We see that this score is relatively high for 𝐾 = 2, then decreases beyond
this value, reflecting a poorer partition of the data as 𝐾 increases.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 45 of 52



Short Title of the Article

4.1.2. Visualization of Clusters
After analyzing inertia and silhouette score, we retain several values of 𝐾 to examine the organization of the data

through dimensionality reduction (PCA with 2 components). Figures 40a, 40b and 40c illustrate the clustering for
𝐾 = 2, 𝐾 = 3 and 𝐾 = 10, respectively.

(a) K = 2 (b) K = 3 (c) K = 10

Figure 40: Visualization of K-Means clusters for different values of 𝐾 (2D PCA projection).

4.1.3. Analysis and Interpretation
• K = 2 : The silhouette score is the highest, suggesting the existence of two well-separated groups. In Figure 40a,

we observe two large clouds of points, distinctly separated in the projected space.
• K = 3 : A third cluster appears, providing finer segmentation (Figure 40b), but the average silhouette decreases,

indicating some additional overlap.
• K = 10 : When the number of clusters is pushed to 10 (Figure 40c), we notice a significant fragmentation of the

data and a drop in silhouette score, indicating a less relevant partition.

Thus, based on the results of K-Means, we have chosen to keep the values 𝐾 = 2, 𝐾 = 3 and 𝐾 = 10 for the
continuation of the analysis:

• 𝐊 = 𝟐 shows a high silhouette score and may be relevant for distinguishing two main categories, for example,
detecting attacks in a binary approach (attacks vs. normal traffic).

• 𝐊 = 𝟑 offers an interesting compromise in terms of separation, with its silhouette score remaining satisfactory.
• 𝐊 = 𝟏𝟎 aligns with the 10 classes present in the dataset, allowing for finer classification that reflects the diversity

of the dataset.
The final choice of 𝐾 nevertheless depends on specific objectives (general detection vs. detailed classification) and

the desired granularity.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 46 of 52



Short Title of the Article

4.1.4. In-depth Analysis
In order to evaluate the relevance of the results obtained with the K-Means algorithm, we analyzed the distribution

of connection types within each cluster for the optimal values 𝐾 = 2, 𝐾 = 3, and 𝐾 = 10. The results show a strong
limitation of the algorithm in effectively separating network flows into distinct categories (attacks vs. non-attacks).

(a) 𝐾 = 2 (b) 𝐾 = 3 (c) 𝐾 = 10

Figure 41: Distribution of connection types in each cluster for 𝐾 = 2, 𝐾 = 3, and 𝐾 = 10.

For 𝐾 = 2 (Figure 41a), the data shows a strong concentration of benign flows (Benign) in Cluster 1 (83,906
connections). However, this cluster also contains all types of attacks, although their proportions are relatively low.
Cluster 2, on the other hand, also includes benign flows, but also several types of attacks (Generic, DoS, etc.). This
distribution reflects poor separation between attack and non-attack flows.

With 𝐾 = 3 (Figure 41b), the new Cluster 3 contains a very low number of connections, indicating underutilization
of this cluster. Clusters 1 and 2 continue to present a significant mix of benign connections and various types of attacks.
This confirms that adding a third cluster does not improve the separation of categories.

For 𝐾 = 10 (Figure 41c), the distribution becomes more granular, but confusion persists. Several clusters (Cluster
1, Cluster 4, Cluster 6, etc.) contain both benign connections and various types of attacks (DoS, Exploits, Fuzzers,
etc.). This fragmentation makes it difficult to interpret the clusters and prevents a clear separation of network flows into
distinct categories.

In conclusion, the results show that the K-Means algorithm fails to effectively separate network flows into coherent
clusters. Whether with 𝐾 = 2, 𝐾 = 3 or 𝐾 = 10, the clusters contain significant mixtures of benign connections and
attacks, which limits the practical usefulness of this grouping for applications such as intrusion detection.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 47 of 52



Short Title of the Article

4.2. GMM (Gaussian Mixture Model)
The Gaussian Mixture Model (GMM) is a probabilistic approach for clustering, which models each cluster as

a combination of Gaussian (normalized) distributions. Unlike K-Means, GMM takes into account the probabilistic
distribution of the points and assigns to each sample a probability of belonging to a given cluster.
4.2.1. Results and Silhouette Score.

We evaluated the GMM model for {2, 3, 10} components (clusters) and calculated the silhouette score for each
partition. The following results were obtained:

• 𝐊 = 𝟐 : Silhouette Score = 0.4555
• 𝐊 = 𝟑 : Silhouette Score = 0.1183
• 𝐊 = 𝟏𝟎 : Silhouette Score = 0.3749
As with K-Means, the value of 𝐾 = 2 offers the best silhouette (0.4555), suggesting two large coherent groupings.

However, for fine classification related to the 10 classes of the dataset, we also examined the configuration 𝐾 = 10,
which achieves a score of 0.3749, lower but consistent with a finer granularity.
4.2.2. Cluster Visualization.

Figure 42 presents the visualization of GMM clusters projected in two-dimensional space, applying a PCA (2
components). It compares the partitions obtained for 𝐾 = 2, 𝐾 = 3, and 𝐾 = 10.

(a) GMM with 𝐾 = 2 (b) GMM with 𝐾 = 3 (c) GMM with 𝐾 = 10

Figure 42: Visualization of clusters with Gaussian Mixture Model for different values of 𝐾 (2D PCA projection).

4.2.3. Analysis and Interpretation.
• K = 2 : With a silhouette score of 0.4555, we identify two large well-differentiated groups, one of which is

significantly denser around low values (see Figure 42a).
• K = 3 : The silhouette drops to 0.1183, indicating a strong overlap between some clusters (Figure 42b).
• K = 10 : The score of 0.3749 suggests more fragmented clusters, consistent with a higher granularity

(Figure 42c). This configuration may still be interesting to approach the logic of a classification into 10 categories,
at the expense of poorer overall separation.

Overall, the Gaussian Mixture Model offers a probabilistic alternative to K-Means: it can be more flexible in
situations where the shape or density of the clusters is not strictly spherical. However, the drop in the silhouette score
at 3 components illustrates the difficulty of obtaining a coherent segmentation on complex datasets, especially when
minority or very spread-out clusters are present.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 48 of 52



Short Title of the Article

4.3. DBSCAN
The DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm detects clusters based on

the density of points, allowing it to identify complex shapes and distinguish isolated points (noise) when they do not
have a sufficiently dense neighborhood. In our implementation, we set eps = 1 and min_samples = 50.
4.3.1. Results and Visualization

Figure 43 illustrates the distribution of labels generated by DBSCAN, projected into a two-dimensional space via
PCA (2 components). Points labeled −1 are considered noise (outliers).

Figure 43: Visualization of clusters with DBSCAN (eps=1, min_samples=50).

The algorithm detected a significant number of noise points: 𝟒𝟑𝟔𝟔. Furthermore, when several valid clusters are
detected (and−1 is not the only label), the estimated silhouette score is 𝟎.𝟒𝟎𝟐𝟕, reflecting a relatively average separation
between the groups.
4.3.2. Analysis and Interpretation

• A dominant cluster: As can be observed in Figure 43, the majority of points (in purple) belong to a
single extended cluster, encompassing many flows with similar characteristics (according to the first two PCA
components).

• Small groupings and noise: However, a few small groupings (in green and blue, near the (0, 0) area) can be
distinguished, reflecting denser data subsets. A significant number of isolated points (−1) are located at the
periphery (or sometimes elevated in the graph), signaling anomalies or atypical flows.

• Moderate silhouette score (≈ 0.4027): This suggests medium intra-cluster cohesion and inter-cluster separa-
tion. The distances in PCA space show that a large part of the points is aggregated in a main cluster, while others
form small pockets of density or are classified as noise.

• Parameters eps and min_samples: The choice of eps = 1 and min_samples = 50 has a direct impact on
the number of clusters and noise points. A higher eps could merge some of these small pockets with the main
cluster, while a lower eps might further segment the dataset.

In summary, DBSCAN allows us to identify a major cluster that seems to correspond to the usual flows, as well as
several more restricted dense groupings and a notable fraction of isolated points (4366).

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 49 of 52



Short Title of the Article

4.4. Hierarchical Clustering
4.4.1. 2 Clusters

(a) Single Linkage (b) Complete Linkage

Figure 44: Hierarchical Clusters for 2 Clusters with Single and Complete Linkage.

For the configuration with 2 clusters, neither single linkage (Figure 44a) nor complete linkage (Figure 44b)
effectively segments the data. The majority of the points are assigned to a single cluster, with only a few isolated
points forming a second cluster. This result suggests that the distances used for merging the clusters do not adequately
capture the structure of the data, making this approach uninformative in this context.
4.4.2. 3 Clusters

(a) Single Linkage (b) Complete Linkage

Figure 45: Hierarchical Clusters for 3 Clusters with Single and Complete Linkage.

With 3 clusters, the observations remain similar. The single linkage method (Figure 45a) assigns almost all points
to the same cluster, while complete linkage (Figure 45b) also fails to identify any significant groupings. These results
indicate that the hierarchical clustering methods are not suitable for this particular dataset, due to the low differentiation
among inter-point distances.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 50 of 52



Short Title of the Article

4.4.3. Dendrograms

(a) Dendrogram with single linkage (b) Dendrogram with complete linkage

Figure 46: Dendrograms of the clusters with single and complete linkage.

The dendrograms (Figures 46a and 46b) confirm this observation. The inter-cluster distances remain low throughout
the aggregation process, indicating that the points are very close to each other in the data space. This explains why
the single and complete linkage algorithms fail to produce meaningful groupings. The analysis of these dendrograms
shows that significant breaks, necessary to determine distinct clusters, are not present in this dataset.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 51 of 52



Short Title of the Article

5. Conclusion
Overall, the work presented in this article reflects the structural and behavioral complexity of network flows and

illustrates the inherent challenges in their detection and large-scale classification. Exploratory data analysis (EDA) has
highlighted the most discriminative features (Flow Duration, Fwd Seg Size Min, Bwd Packets/s, etc.) to differentiate,
on one hand, benign traffic from attacks and, on the other hand, the different categories of attacks themselves.
Supervised machine learning models (XGBoost, LightGBM, CatBoost, etc.) have shown excellent performance for
binary identification and multi-class classification, with a slight edge for XGBoost and ensemble methods (Stacking,
Voting, Bagging). Hyperparameter optimizations via Optuna have enhanced precision and recall, underscoring that
fine-tuning remains essential to get the most out of these algorithms.

From an unsupervised perspective, clustering approaches (K-Means, GMM, DBSCAN, and hierarchical methods)
have proven less conclusive in effectively separating the classes of the CIC-UNSW-NB15 dataset. Although K-Means
and GMM provided clustering elements for two or three clusters, the distribution of flows (including attacks) within
each partition remained highly mixed. Hierarchical methods, on the other hand, failed to highlight clear breaks in a
highly dense and poorly differentiated space. Nevertheless, DBSCAN was able to identify density pockets and several
outliers, demonstrating its ability to detect diffuse anomalies.

The complementarity between supervised and unsupervised analysis remains a promising research avenue for
proactive threat detection in complex network environments. Exploring semi-supervised algorithms or active learning
techniques could provide solutions for scenarios where few labeled samples are available. Furthermore, the continuous
refinement of models (hyperparameter tuning, engineering new features, using techniques for balancing rare classes)
is crucial to further enhance detection robustness. Ultimately, these results emphasize the importance of a multidimen-
sional approach—combining EDA, feature selection, and model combinations—to achieve a high level of performance
in the detection and classification of network attacks.

Arthur KEUSCH and Hassan NOURA: Preprint submitted to Elsevier Page 52 of 52


